
The evolution of hardware
isolation for smartphones
To keep a smartphone’s most sensitive processes and data protected in
case of attack, phone makers have turned to isolation via hardware, first
through virtualization on a single processor and then through a dedicated
security chip. But as advanced hackers continue to look for ways to break
this hardware isolation, a shift in tactics may be required to keep the
information of security-conscious users safe.

• Full access: A smartphone is essentially
an all-access pass to a victim’s life,
acting as a repository of their photos,
locations, personal messages and more.
It can also serve as an access point into
enterprise systems. Captured assets can
reveal actionable information or simply
provide fodder for additional attacks.

• Relaxed user security posture: Whereas
an individual might think twice before
clicking on a phishing email on their work
computer, they may not necessarily exhibit
the same awareness on the device they
use throughout the day to text friends,
browse social media and play games. The
device’s small screen contributes to this
situation as it makes identifying malicious
emails and websites more challenging.

• Consumer focus: Phone makers are in a
constant battle to make their devices more
attractive to consumers, meaning that new
features are being added at a breakneck
pace. All of this new code opens up
additional opportunities for hackers to find
vulnerabilities and exploit them.

Cellular connectivity: Smartphones are
designed to be always on and always
connected to the cellular network.
This works to a hacker’s advantage by
increasing the device’s capacity for remote
monitoring and adding to its attack surface
with an interface typically outside of the
control of mobile security protections.

• Susceptibility to zero-click attacks: While
rare, zero-click attacks against smartphones
enable threat actors to stealthily take
total control of a device without any
interaction needed from the user.

• Capacity for spying: When infected with
spyware, a smartphone’s cameras and
microphones can be remotely activated
to listen in on the user’s in-person
conversations and look in on their private
spaces, essentially turning the device
into an always-present spying tool.

The need for hardware isolation
As smartphones evolved from on-the-go tools into digital extensions of our lives, these
devices have gained more and more attention from hackers. And in many ways, mobile devices
are more attractive targets than PCs because of their unique features. These include:

P R I V O R O . C O M

Protecting the security subsystem
Against this backdrop, phone makers have
needed a way to ensure that a smartphone’s
security subsystem – its set of most critical
operations – is protected in case the
main operating system is compromised,
lest the attacker gain the ability to read
encrypted data or load malicious code
with more powerful permissions than
even the device’s operating system.

A security subsystem differs slightly between
device models but typically includes
cryptographic operations, the secure
boot process and trusted applications.

Cryptographic operations
A device’s unique, private root key (or
its unique ID number used to generate
a temporary private key) is critical to
the cryptographic foundation of any
smartphone. For these reasons, the root
key is generated on the smartphone during
the manufacturing process and is meant to
never leave the device or even be directly
accessible to other device functions.

Without the root key, an attacker who has
gained control of a device’s operating system
may be able to exfiltrate the data from the
device but not be able to decrypt it.

Along with the device’s root key, the security
subsystem includes mechanisms for generating
additional cryptographic keys; encrypting,
decrypting, signing and validating data; and
accelerating cryptographic calculations.

Secure boot process
A smartphone’s chain of trust typically begins
with immutable initialization code that’s laid
down in silicon during chip fabrication and
then stored in read-only memory (ROM). Once
the device is powered on, the application
processor (or dedicated security chip) executes
the code, which starts a process where each
newly loaded component cryptographically
validates the next component in the chain: first
the initialization code, then the bootloader
(firmware), then the kernel (operating
system) and finally the apps. Isolated
execution environments will have their own
chain of trust that loads as a prerequisite
for loading the main, user-facing OS.

By subverting the secure boot process,
an attacker can control the OS and
thus gain virtually unlimited control
over the device and its data.

Trusted applications
While one of the key goals of a security
subsystem is to be as small as possible
in order to minimize its attack surface,
this protected area can also run trusted
applications or provide critical functionality
for doing so. Typical applications include
the processing of biometric authentication
requests, the processing of payments
and the storage of passwords.

P R I V O R O . C O M
2

Approach #1: Trusted execution
environment (TEE)
The earliest approach for barricading a
smartphone’s security subsystem is the trusted
execution environment (TEE), a virtualized
environment that’s separated from the user-
facing OS. A TEE is designed to run from the
main processor, with hardware providing
dedicated processing and memory.

ARM’s TrustZone
TrustZone, which was first made available
in ARM processors in 2004, is effectively
the standard TEE architecture for Android
smartphones. TrustZone grew in popularity
because it provides easily accessible security
without specialized hardware, in effect allowing
phone makers to keep costs low, release
products more quickly and forgo compromises
on battery life and device size. As TrustZone
is an architecture only, numerous implementa-
tions based on TrustZone have been developed
commercially, the most deployed of which are
Trustonic’s Kinibi and Qualcomm’s QSEE.

TrustZone consists of two virtual processors:
a “secure world” for the security subsystem
and a “non-secure” world for everything else,
including the Android OS and user apps.
The secure world has its own OS, apps and
privileges. By design, anything in the main
environment can’t “see” or modify what is
happening inside the TEE. Hardware logic
dictates separate processing and memory,
with each physical CPU core providing an
abstraction of two virtual ones. So-called
monitor mode, which runs in the secure world,
manages the transition between worlds via
the Secure Monitor Call (SMC) instruction.

Attacks against TrustZone
Given its close proximity to the main OS,
a TrustZone-based TEE is susceptible to a
number of attack methods from a hacker who’s
gained kernel-level privileges.

Exploitation of implementation flaws
Because TrustZone implementations are based
in software, the potential for bugs always
exists. One way that attackers discover coding
errors is through fuzzing, which involves hitting
the targeted system with massive amounts of
random data in the hopes of causing a crash.

In 2019, researchers from Check Point revealed
an attack chain1 against Qualcomm’s QSEE
that could result in the leakage of data
stored in the secure world, including financial
information. After using two known bugs to
break TrustZone partitions, the researchers
successfully edited code to replace a
trusted app’s hash block after verification,
in effect providing the ability to load a
secure world app in the non-secure world.

Hijacked switching between worlds
The SMC-based communication system
between the two worlds is a common starting
point for attacks against the secure world.

With elevated privileges, an attacker can
bypass SMC authentication to send a
malformed SMC instruction2 to the secure
world, which typically has limited mechanisms
for verifying the validity of the message.
These instructions can be used to receive
encrypted data from the secure world, load
a module to the secure world and more.

Attackers can also intercept the switching
from the secure world to the non-secure
world, spoofing the process to deceive users.

Side-channel attacks
Given that the secure world and non-secure
world share the same processor, the
TrustZone TEE is susceptible to side-channel
attacks in which attackers try indirect
methods, like measuring cache access
attempts or power consumption, to
infer secrets from the secure world.

In the ARMageddon attacks3, researchers
from Graz University of Technology
demonstrated a variety of advanced cache
timing attacks across CPU cores. In one attack
against TrustZone, they used a Prime+Probe
approach, which entails occupying specific
cache sets, scheduling the targeted program
and determining which cache sets are still
occupied. This technique can be used to
infer private keys from the secure world.

TEEs are also susceptible to speculative
execution attacks, which capitalize on
the fact that chips will run instructions
in anticipation of expected results. For
example, a variant of Foreshadow4 allowed
attackers to read the memory of Intel’s
Software Guard Extensions (SGX) TEE and
therefore remotely steal private keys.

P R I V O R O . C O M
3

Approach #2: Secure element (SE)

A dedicated security chip known as a
secure element (SE) takes the concept
of the TEE one step further, giving the
security subsystem its own processor that’s
physically isolated from the main application
processor. First introduced by Apple in
2013, most Android makers now have their
own dedicated security chip as part of
the system on a chip (SoC) they use.

Apple’s Secure Enclave
Apple’s Secure Enclave is a dedicated security
chip with its own microkernel and secure
boot process. It’s not directly accessible by
the main OS or apps; its only communication
with the application processor occurs via
an interrupt-driven mailbox and shared
memory data buffers. Apple designed the
Secure Enclave with a number of security
features: the amount of flashable storage
is small, minimizing the attack surface;
physical tamper detection prevents forensic
examination of protected keys and other
material; and a lower clock speed provides
protection against side-channel attacks.

The main purpose of the Secure Enclave
is to generate the device’s Unique ID
(UID) number during the manufacturing
process and keep it segregated from the
rest of iOS. Each time the iPhone starts up,
the device uses the UID to create a new
temporary key that both encrypts and
authenticates the Secure Enclave’s memory.

Attacks against
the Secure Enclave

Though the Secure Enclave is a giant upgrade
in security from the TEE, attacks against it are
still possible given that it shares resources with
the application processor.

Exploitation of implementation flaws
The Secure Enclave’s memory controller can
be poked at from the application processor.
In 2020, Chinese hackers from the Pangu Team
reportedly found an unpatchable exploit5 for
this memory controller, enabling an attacker
to take control of the specific register memory
that manages the Secure Enclave’s memory

usage. From there, an attacker can alter
how the memory isolation system of shared
memory between the Secure Enclave and the
main processor functions. In turn, this could
feasibly be used to acquire data that would
normally be viewed and used only by the
Secure Enclave, including private keys.

This particular attack would require physical
access to the device but nonetheless
demonstrates the potential consequences
of having the memory controller
accessible from the main processor.

Side-channel attacks
The Secure Enclave shares a power manager
with the application processor, opening the
door to fault attacks.

As a research team from Columbia University
demonstrated with their remote CLKSCREW
attack6 against TrustZone, when a power
manager is shared between environments, it’s
possible for one environment to overstress
the other environment’s hardware, thus
overclocking the CPU. By recording the
results and comparing them with the
results at normal operation, an attacker
can induce and detect single-byte errors
that can later be used to extract private
keys from the isolated environment.

Apple employs monitoring circuits for power
and clock speed to ensure that the Secure
Enclave operates within a limited envelope.
This raises the difficulty of such a fault attack,
but it’s feasible that an attacker can stress the
hardware to the limits of this range and then
infer secrets based on these measurements.

P R I V O R O . C O M
4

Approach #3: External,
phone-independent hardware
At Privoro, we anticipate that advanced
attackers will continue to find ways of
exploiting the Secure Enclave and other
security chips, using any and all overlap
between secure and non-secure systems
to find and leverage exploits. And yet, by
virtue of being on the same SoC, there’s
only so much separation that can be
created between environments. To truly
protect the security subsystem, it has to be
relegated to a high-security system outside
of the smartphone itself. We believe that
SafeCase™, our smartphone-coupled security
device, will be that system of choice.

A key function of SafeCase is that it serves
as a secondary, special-purpose computing
device to the smartphone. Critically, SafeCase
operates within its own closed, end-to-
system, meaning that though it pairs with the
coupled smartphone, it remains functionally
independent. Architecturally, SafeCase
shares many of the same features as the
Secure Enclave, including a hardware root of
trust, secure processing and secure storage.
SafeCase also replicates key smartphone
components, including motion sensors.

Elements of the smartphone’s security
subsystem can be offloaded to SafeCase,
including the storage of private keys
and any cryptographic operations using
these keys. Trusted applications can
also be built that leverage the device’s
integrated hardware components.

This two-system approach is an architectural
evolution that materially increases
security. Even if an attacker were able
to remotely compromise the SafeCase-
coupled smartphone, they would have
no ability to cross over to the hardened
SafeCase platform to access security-
critical elements like stored private keys.

For users and organizations subject to
sophisticated attackers, the concept of
external, phone-independent hardware
holds the key to achieving secure mobility
while simultaneously leveraging the
connectivity and productivity gains
represented by commercial smartphones.

 SafeCase Carbon SafeCase Carbon X SafeCase Onyx SafeCase Shadow

P R I V O R O . C O M
5

©
2

0
24

 P
ri

vo
ro

 L
LC

 o
r

it
s

affi
lia

te
s.

 A
ll

ri
g

h
ts

 r
es

e
rv

e
d

. S
am

su
n

g
 a

n
d

 G
al

ax
y

ar
e

tr
ad

e
m

ar
ks

 o
f

S
am

su
n

g
 E

le
ct

ro
n

ic
s

C
o

.,
L

td
. T

h
e

P
ri

vo
ro

S

af
e

C
as

e
d

ev
ic

e
is

 n
o

t
affi

lia
te

d
, a

ss
o

ci
at

e
d

, s
p

o
n

so
re

d
, e

n
d

o
rs

e
d

 b
y,

 o
r

in
 a

ny
 w

ay
 o

ffi
ci

al
ly

 c
o

n
n

e
ct

e
d

 w
it

h
S

am
su

n
g

. P
V

O
C

O
N

J2
0

7

Sources
1. Makkaveev, Slava, “The Road to

Qualcomm TrustZone Apps Fuzzing,”
Check Point, November 14, 2019.

2. Shen, Di, “Exploiting Trustzone
on Android,” Black Hat USA
2015, August 6, 2015.

3. Lipp, Moritz, Daniel Gruss, et al.,
“ARMageddon: Cache Attacks on
Mobile Devices,” 25th USENIX Security
Symposium, August 10, 2016.

4. Lindell, Yehuda, “Foreshadow, SGX
& the Failure of Trusted Execution,”
Dark Reading, September 12, 2018.

5. Owen, Malcolm, “Security Enclave
vulnerability seems scary, but
won’t affect most iPhone users,”
AppleInsider, August 3, 2020.

6. Tang, Adrian, Simha Sethumadhavan,
et al., “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy
Management,” 26th USENIX Security
Symposium, August 16, 2017.

P R I V O R O . C O M
6

