
The evolution of hardware 
isolation for smartphones
To keep a smartphone’s most sensitive processes and data protected in 
case of attack, phone makers have turned to isolation via hardware, first 
through virtualization on a single processor and then through a dedicated 
security chip. But as advanced hackers continue to look for ways to break 
this hardware isolation, a shift in tactics may be required to keep the 
information of security-conscious users safe.

• Full access: A smartphone is essentially 
an all-access pass to a victim’s life, 
acting as a repository of their photos, 
locations, personal messages and more. 
It can also serve as an access point into 
enterprise systems. Captured assets can 
reveal actionable information or simply 
provide fodder for additional attacks.

• Relaxed user security posture: Whereas 
an individual might think twice before 
clicking on a phishing email on their work 
computer, they may not necessarily exhibit 
the same awareness on the device they 
use throughout the day to text friends, 
browse social media and play games. The 
device’s small screen contributes to this 
situation as it makes identifying malicious 
emails and websites more challenging.

• Consumer focus: Phone makers are in a 
constant battle to make their devices more 
attractive to consumers, meaning that new 
features are being added at a breakneck 
pace. All of this new code opens up 
additional opportunities for hackers to find 
vulnerabilities and exploit them. 
 

Cellular connectivity: Smartphones are 
designed to be always on and always 
connected to the cellular network. 
This works to a hacker’s advantage by 
increasing the device’s capacity for remote 
monitoring and adding to its attack surface 
with an interface typically outside of the 
control of mobile security protections.

• Susceptibility to zero-click attacks: While 
rare, zero-click attacks against smartphones 
enable threat actors to stealthily take 
total control of a device without any 
interaction needed from the user.

• Capacity for spying: When infected with 
spyware, a smartphone’s cameras and 
microphones can be remotely activated 
to listen in on the user’s in-person 
conversations and look in on their private 
spaces, essentially turning the device 
into an always-present spying tool.

The need for hardware isolation
As smartphones evolved from on-the-go tools into digital extensions of our lives, these 
devices have gained more and more attention from hackers. And in many ways, mobile devices 
are more attractive targets than PCs because of their unique features. These include:
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Protecting the security subsystem
Against this backdrop, phone makers have 
needed a way to ensure that a smartphone’s 
security subsystem – its set of most critical 
operations – is protected in case the 
main operating system is compromised, 
lest the attacker gain the ability to read 
encrypted data or load malicious code 
with more powerful permissions than 
even the device’s operating system.

A security subsystem differs slightly between 
device models but typically includes 
cryptographic operations, the secure 
boot process and trusted applications.

Cryptographic operations 
A device’s unique, private root key (or 
its unique ID number used to generate 
a temporary private key) is critical to 
the cryptographic foundation of any 
smartphone. For these reasons, the root 
key is generated on the smartphone during 
the manufacturing process and is meant to 
never leave the device or even be directly 
accessible to other device functions.

Without the root key, an attacker who has 
gained control of a device’s operating system 
may be able to exfiltrate the data from the 
device but not be able to decrypt it.

Along with the device’s root key, the security 
subsystem includes mechanisms for generating 
additional cryptographic keys; encrypting, 
decrypting, signing and validating data; and 
accelerating cryptographic calculations.

 

 
  
Secure boot process 
A smartphone’s chain of trust typically begins 
with immutable initialization code that’s laid 
down in silicon during chip fabrication and 
then stored in read-only memory (ROM). Once 
the device is powered on, the application 
processor (or dedicated security chip) executes 
the code, which starts a process where each 
newly loaded component cryptographically 
validates the next component in the chain: first 
the initialization code, then the bootloader 
(firmware), then the kernel (operating 
system) and finally the apps. Isolated 
execution environments will have their own 
chain of trust that loads as a prerequisite 
for loading the main, user-facing OS.

By subverting the secure boot process, 
an attacker can control the OS and 
thus gain virtually unlimited control 
over the device and its data.

Trusted applications 
While one of the key goals of a security 
subsystem is to be as small as possible 
in order to minimize its attack surface, 
this protected area can also run trusted 
applications or provide critical functionality 
for doing so. Typical applications include 
the processing of biometric authentication 
requests, the processing of payments 
and the storage of passwords.
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Approach #1: Trusted execution 
environment (TEE)
The earliest approach for barricading a 
smartphone’s security subsystem is the trusted 
execution environment (TEE), a virtualized 
environment that’s separated from the user-
facing OS. A TEE is designed to run from the 
main processor, with hardware providing 
dedicated processing and memory.

ARM’s TrustZone 
TrustZone, which was first made available 
in ARM processors in 2004, is effectively 
the standard TEE architecture for Android 
smartphones. TrustZone grew in popularity 
because it provides easily accessible security 
without specialized hardware, in effect allowing 
phone makers to keep costs low, release 
products more quickly and forgo compromises 
on battery life and device size. As TrustZone 
is an architecture only, numerous implementa-
tions based on TrustZone have been developed 
commercially, the most deployed of which are 
Trustonic’s Kinibi and Qualcomm’s QSEE. 
 
TrustZone consists of two virtual processors: 
a “secure world” for the security subsystem 
and a “non-secure” world for everything else, 
including the Android OS and user apps. 
The secure world has its own OS, apps and 
privileges. By design, anything in the main 
environment can’t “see” or modify what is 
happening inside the TEE. Hardware logic 
dictates separate processing and memory, 
with each physical CPU core providing an 
abstraction of two virtual ones. So-called 
monitor mode, which runs in the secure world, 
manages the transition between worlds via 
the Secure Monitor Call (SMC) instruction.

Attacks against TrustZone 
Given its close proximity to the main OS, 
a TrustZone-based TEE is susceptible to a 
number of attack methods from a hacker who’s 
gained kernel-level privileges.

Exploitation of implementation flaws 
Because TrustZone implementations are based 
in software, the potential for bugs always 
exists. One way that attackers discover coding 
errors is through fuzzing, which involves hitting 
the targeted system with massive amounts of 
random data in the hopes of causing a crash.

In 2019, researchers from Check Point revealed 
an attack chain1 against Qualcomm’s QSEE 
that could result in the leakage of data 
stored in the secure world, including financial 
information. After using two known bugs to 
break TrustZone partitions, the researchers 
successfully edited code to replace a 
trusted app’s hash block after verification, 
in effect providing the ability to load a 
secure world app in the non-secure world.

Hijacked switching between worlds 
The SMC-based communication system 
between the two worlds is a common starting 
point for attacks against the secure world.

With elevated privileges, an attacker can 
bypass SMC authentication to send a 
malformed SMC instruction2 to the secure 
world, which typically has limited mechanisms 
for verifying the validity of the message. 
These instructions can be used to receive 
encrypted data from the secure world, load 
a module to the secure world and more.

Attackers can also intercept the switching 
from the secure world to the non-secure 
world, spoofing the process to deceive users.

Side-channel attacks 
Given that the secure world and non-secure 
world share the same processor, the 
TrustZone TEE is susceptible to side-channel 
attacks in which attackers try indirect 
methods, like measuring cache access 
attempts or power consumption, to 
infer secrets from the secure world.

In the ARMageddon attacks3, researchers 
from Graz University of Technology 
demonstrated a variety of advanced cache 
timing attacks across CPU cores. In one attack 
against TrustZone, they used a Prime+Probe 
approach, which entails occupying specific 
cache sets, scheduling the targeted program 
and determining which cache sets are still 
occupied. This technique can be used to 
infer private keys from the secure world.

TEEs are also susceptible to speculative 
execution attacks, which capitalize on 
the fact that chips will run instructions 
in anticipation of expected results. For 
example, a variant of Foreshadow4 allowed 
attackers to read the memory of Intel’s 
Software Guard Extensions (SGX) TEE and 
therefore remotely steal private keys.

P R I V O R O . C O M
3



Approach #2: Secure element (SE)

A dedicated security chip known as a 
secure element (SE) takes the concept 
of the TEE one step further, giving the 
security subsystem its own processor that’s 
physically isolated from the main application 
processor. First introduced by Apple in 
2013, most Android makers now have their 
own dedicated security chip as part of 
the system on a chip (SoC) they use.

Apple’s Secure Enclave 
Apple’s Secure Enclave is a dedicated security 
chip with its own microkernel and secure 
boot process. It’s not directly accessible by 
the main OS or apps; its only communication 
with the application processor occurs via 
an interrupt-driven mailbox and shared 
memory data buffers. Apple designed the 
Secure Enclave with a number of security 
features: the amount of flashable storage 
is small, minimizing the attack surface; 
physical tamper detection prevents forensic 
examination of protected keys and other 
material; and a lower clock speed provides 
protection against side-channel attacks.

The main purpose of the Secure Enclave 
is to generate the device’s Unique ID 
(UID) number during the manufacturing 
process and keep it segregated from the 
rest of iOS. Each time the iPhone starts up, 
the device uses the UID to create a new 
temporary key that both encrypts and 
authenticates the Secure Enclave’s memory.

Attacks against  
the Secure Enclave 
 
Though the Secure Enclave is a giant upgrade 
in security from the TEE, attacks against it are 
still possible given that it shares resources with 
the application processor. 
 
Exploitation of implementation flaws 
The Secure Enclave’s memory controller can  
be poked at from the application processor. 
In 2020, Chinese hackers from the Pangu Team 
reportedly found an unpatchable exploit5 for 
this memory controller, enabling an attacker 
to take control of the specific register memory 
that manages the Secure Enclave’s memory  

 
 
usage. From there, an attacker can alter 
how the memory isolation system of shared 
memory between the Secure Enclave and the 
main processor functions. In turn, this could 
feasibly be used to acquire data that would 
normally be viewed and used only by the 
Secure Enclave, including private keys.

This particular attack would require physical 
access to the device but nonetheless 
demonstrates the potential consequences 
of having the memory controller 
accessible from the main processor.

Side-channel attacks 
The Secure Enclave shares a power manager 
with the application processor, opening the 
door to fault attacks.

As a research team from Columbia University 
demonstrated with their remote CLKSCREW 
attack6 against TrustZone, when a power 
manager is shared between environments, it’s 
possible for one environment to overstress 
the other environment’s hardware, thus 
overclocking the CPU. By recording the 
results and comparing them with the 
results at normal operation, an attacker 
can induce and detect single-byte errors 
that can later be used to extract private 
keys from the isolated environment.

Apple employs monitoring circuits for power 
and clock speed to ensure that the Secure 
Enclave operates within a limited envelope. 
This raises the difficulty of such a fault attack, 
but it’s feasible that an attacker can stress the 
hardware to the limits of this range and then 
infer secrets based on these measurements.
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Approach #3: External,  
phone-independent hardware
At Privoro, we anticipate that advanced 
attackers will continue to find ways of 
exploiting the Secure Enclave and other 
security chips, using any and all overlap 
between secure and non-secure systems 
to find and leverage exploits. And yet, by 
virtue of being on the same SoC, there’s 
only so much separation that can be 
created between environments. To truly 
protect the security subsystem, it has to be 
relegated to a high-security system outside 
of the smartphone itself. We believe that 
SafeCase™, our smartphone-coupled security 
device, will be that system of choice.

A key function of SafeCase is that it serves 
as a secondary, special-purpose computing 
device to the smartphone. Critically, SafeCase 
operates within its own closed, end-to-
system, meaning that though it pairs with the 
coupled smartphone, it remains functionally 
independent. Architecturally, SafeCase 
shares many of the same features as the 
Secure Enclave, including a hardware root of 
trust, secure processing and secure storage. 
SafeCase also replicates key smartphone 
components, including motion sensors.

Elements of the smartphone’s security 
subsystem can be offloaded to SafeCase, 
including the storage of private keys 
and any cryptographic operations using 
these keys. Trusted applications can 
also be built that leverage the device’s 
integrated hardware components.

This two-system approach is an architectural 
evolution that materially increases 
security. Even if an attacker were able 
to remotely compromise the SafeCase-
coupled smartphone, they would have 
no ability to cross over to the hardened 
SafeCase platform to access security-
critical elements like stored private keys.

For users and organizations subject to 
sophisticated attackers, the concept of 
external, phone-independent hardware 
holds the key to achieving secure mobility 
while simultaneously leveraging the 
connectivity and productivity gains 
represented by commercial smartphones.

        SafeCase Carbon       SafeCase Carbon X           SafeCase Onyx        SafeCase Shadow
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